在行测的数学运算部分,尤其是近些年经常会出现一些周期性的题目,但考察的方式却极为广泛。对此类题型,很多学生都反应,平时也做了大量的题,一到考场就感觉无从下手,之所以造成这种反差,江苏公务员考试网(http://www.jsgwy.com.cn/)认为主要还在于同学们对周期问题还未抓住其本质的特点。下面,针对周期问题进行详解。
例1:有甲、乙、丙三辆公交车于上午8:00同时从公交总站出发,三辆车再次回到公交总站所用的时间分别为40分钟、25分钟和50分钟,假设这三辆公交车中途不休息,请问它们下次同时到达公交总站将会是几点?( )(2011.4.24联考)
A. 11点整 B. 11点20分 C. 11点40分 D. 12点整
解析:这是一道求最小公倍数的周期问题。从题中可得,甲公交车每40分钟一趟,是一个周期T=40的周期函数;乙公交车每25分钟一趟,是一个周期T=25的周期函数;丙公交车每50分钟一趟,是一个周期T=50的周期函数,上午8点三车同时出发,求三车下次同时到达公交总站的时间,其实就是求三个周期函数的交点,交点必是三个不同周期40,25,50的最小公倍数200,所以从早上8点开始,经历200分钟后,三车同时到达公交总站,所以选B。
例2:甲每隔4天进城一次,乙每隔8天进城一次,丙每隔11天进城一次,某天三人在城里相遇,那么下次相遇至少要?( )
A. 60天 B. 180天 C. 54天 D. 162天
解析:这是一道求最小公倍数的周期问题。此题描述了甲、乙、丙三个人,分别代表三个不同周期的函数,求三个周期函数的交点,从数学角度讲,本题难度和解题思路与例1是一样的;从言语角度讲,本题难度比上一题加大了,甲每隔4天进一次城,其实是甲每5天进一次城;乙每隔8天进一次城,其实是每9天进一次城;丙每隔11天进一次城,其实是每12天进一次城,不少考生掉入陷阱,误求4,8,11的最小公倍数;本题正确解法为求5,9,12的最小公倍数,最小公倍数是180天。故选B。
例3:在我国民间常用十二生肖进行纪年,十二生肖的排列顺序是:鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪。2011年是兔年,那么2050年是( )(2011安徽省考)
A. 虎年 B. 龙年 C. 马年 D. 狗年
解析:读完题,可以很容易判断出来这是一道周期问题,并且周期T=12。但是,此题与上面两道周期例题有明显的区别:上面两道题有几个不同周期函数并有交点,解题思路求最小公倍数即可;本题只有一个周期函数,这就是周期问题的第2类题型,仅有一个周期函数题型。我们认为,这种题型解起来很简单,大家只要记住周期公式即可:总数÷周期数=循环式…余数(不能整除)。总数:2050-2011=39,周期数=12,39÷12=3…3,从2011年到2050年要经历3个循环余3年,2011+12×3=2047,2011年是兔年,所以3个循环后2047年也兔年,再加3年,所以2050年是马年。故选C。
例4:1路、2路和3路公交车都是从8点开始经过A站后走相同的路线到达B站,之后分别是每30分钟,40分钟和50分钟就有1路、2路和3路车到达A站。在傍晚17点05分有位乘客在A站等候准备前往B站,他先等到几路车?( )(2011.9.17联考)
A. 1路 B. 2路 C. 3路 D. 2路和3路
解析:这是一道周期问题。从早上8点到下午17点05分,共经历545分钟,1路车的周期数为30,2路车的周期数为40,3路车的周期数位50。545÷30=18…5,从早上8点开始,到下午17:05分,共有18辆1路车经过A站,乘客在等第19辆1路车时,已经等了5分钟,30分钟一趟1路车,所以还需再等25分钟;545÷40=13…25,从早上8点开始,到下午17:05分,共有13辆2路车经过A站,乘客在等第14辆2路车时,已经等了25分钟,40分钟一趟2路车,所以还需再等15分钟;545÷50=10…45,从早上8点开始,到下午17:05分,共有10辆3路车经过A站,乘客在等第11辆3路车时,已经等了45分钟,50分钟一趟3路车,所以还需再等5分钟,所以最先等到3路车。故选C。